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Abstract: — In this paper, an algebraic affine and projective Edwards curves [3, 9] over the finite field F np
is considered. It 

is well known, in the theory of Cryptosystems, Cryptology and  Theoretical Computer Science, that many modern 
cryptosystems [11]  can be naturally transformed into elliptic curves [5]. In this paper, Edwards algebraic curves over a finite 
field are studied which are one of the most promising supports of sets of points that are used for fast group operations [1]. In 
this paper, a new method for counting the order of an Edwards curve over a finite field is presented. This method can be 
applied in the order of elliptic curves due to the birational equivalence between elliptic curves and Edwards curves. We do not 
find only a s pecific set of coefficients with corresponding field characteristics for which these curves are supersingular, but 
we find also a general formula by which one can determine whether a curve [ ]d pE F   is supersingular over this field or not. 
The embedding degree of the supersingular Edwards curve over np

F in a finite field is investigated and the field characteristic, 

where this degree is minimal, is found. A birational isomorphism between the Montgomery curve and the Edwards curve is 
also constructed. A one-to-one correspondence between the Edwards supersingular curves and Montgomery supersingular 
curves is presented. The criterion of supersingularity for Edwards curves is found over  np

F . 
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1. Introduction 
It is well  known, in the theory of Cryptosystems, 
Cryptology and  Theoretical Computer Science that many 
modern cryptosystems [11]  can be naturally transformed 
into elliptic curves [5]. The task of find ing the order of an 
algebraic curve over a finite field np

F  is now very relevant 

and is at the  center of many m athematical studies in 
connection with the use of gr oups of p oints of curves of 
genus 1 in cryp tography. In this study, this problem is 
solved for the Edwards and Montgomery curves.    

The criterion of supersingularity of the Edwards 
curves is found over np

F . We propose also a method for 

counting the points from Edwards curves and elliptic curves 
in response to an earlier paper by Schoof [8]. 

The algebraic affine and projective Edwards curves 
over a fi nite field is considered. We do not find only a 
specific set of coefficients with c orresponding field 
characteristics for which  supersingular, but we additionally  
find a general formula by which one can determine whether 
a curve [ ]d pE F is supersingular over this field or not. 
 
2. Main Result 
The twisted Edwards curve with coefficients 

*, pa d F , 1, 2, ,d p a d     is the curve , :a dE  
2 2 2 2 *1 , , , ( ) 0,pax y dx y a d F ad a d       

It should be noted that a twisted Edwards curve is called an  
Edwards curve when 1a  . 

We denote by dE   the Edwards curve with coefficient  
*

pd F  which is defined as 2 2 2 21x y dx y    over pF . 
The projective curve has 
form 2 2 2 2 4 2 2( , , )F x y z ax z y z z dx y     . 
The special points are the infinitely distant points (1,0,0)   
and (0,1,0)   and t herefore we fi nd its singularities at  
infinity in the corresponding affine components 

1 2 2 2 4 2:A az y z z dy     and 2 2 2 2 4 2:A ax z z z dx   . 
These are simple singularities. 
We describe the structure of the local ri ng at the point 1p   
whose elements are quotients of functions with the 

form ( , , )( , , )
( , , )

f x y z
F x y z

g x y z
 , where t he denominator cannot 

take the value of 0  at the singular point 1p . In particular, we 
note that a local ring which has two singularities consists of 
functions with the denominators are not divisible 
by ( 1)( 1)x y  . 

We denote by p
p dim /

p
 O

O , where pO   denotes the local  
ring at the si ngular point p   which is generated by the 
relations of regular functions 

p :( , ( 1)( 1)) 1f
g x y

g

 
    
 

O   and pO   denotes the whole 

closure of the local ring at the singular point p . 
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We find that dim / 1p

pp  O
O   is the dimension of the 

factor as a ve ctor space. Because the basis of e xtension 
p

p

O
O   consists of just one el ement at each distinct point, 

we obtain that 1p  . We calculate then the genus of the 
curve according to Fulton [4]. 

* ( 1)( 2)( ) ( ) 3 2 1,
2p p

p E p E

n n
C C   

 

 
          

 
where ( )C  denotes the arithmetic genus of the curve C   
with parameter deg( ) 4n C  . It should be noted that the 
supersingular points were discovered in [10]. We recall the 
curve has a genus of 1 and as such it is known to be 
isomorphic to a flat c ubic curve, however, the curve is 
importantly not elliptic because of its si ngularity in th e 
projective part. Both the Edwards curve and the twisted 
Edwards curve are isomorphic to some affine part of the 
elliptic curve. The Edwards curve after normalization is 
precisely a curve in the Weierstrass normal form, which was 
proposed by Montgomery [1] and will be denoted by ME . 
Koblitz [4,5] proves that one can d etect if a cu rve is 
supersingular using the search for the curve when that curve 
has the same number of points as its t orsion curve. Also an 
elliptic curve E   over qF   is called  supersingular if for 
every finite extension rq

F  there are no points in the group 

( )rq
E F  of order p [17]. It is kno wn [1] that the transition 

from an Ed wards curve to the related  torsion curve is 

determined by the reflection     1, , ,x y x y x
y

 
  
 

 . We 

now recall an important result from Vinogradov [13] which 
will act as criterion for supersingularity. 
 
Lemma 2.1. Let k   and pP .  Then 

1

1

0  ( mod  ), | ( 1),
1 ( mod  ), | ( 1),  

p
n

k

p n p
k

p n p





 
  

   

where  | ( 1)n p   denotes that n  is divisible by 1p   . 
The order of a curve is  precisely the number of its affine 
points with a neutral element, where the group operation is 
well defined. It is known that the order of  

2 2 2 21x y dx y    coincides with the order of the curve  
2 2 1 2 21x y d x y    over .pF  We will now strengthen an 

existing result given in [10]. We denote the number of 
points with a neutral element of an a ffine Edwards curve 
over the finite field pF   by [ ]d pN   and the number of points 

on the projective curve over the same field by [ ]d pN  . 
 
Theorem 2.1.  If 3( mod  4)p   is prime and 
the following condition of  supersingularity 

1
2

2
1

0 2

( ) 0( mod  ),

p

j j
p

j

C d p






              (1) 

is true then the orders of the curves 2 2 2 21x y dx y     and 
2 2 1 2 21x y d x y    over pF  are equal to 

[ ] 1,d pN p   when 1d

p

 
  

 
,  and [ ] 3,d pN p  when 

1d

p

 
 

 
.  

Proof. Consider the curve dE : 
2 2 2 21 .x y dx y                      (2) 

Transform it i nto the form 2 2 2 2(1 ) 1y dx y x    , then we 
express 2y  by applying a rational transformation which lead 

us to the curve 
2

2
2 2

1
1

x
y

dx y





 . 

For our analysis we transform it into the curve 
2 2 2( 1)( 1).y x dx         (3) 

We denote the number of points from an af fine Edwards 
curve over the finite field pF  by [ ]d pM  . This curve (3) has 

[ ] [ ] 1d p d p

d
M N

p

 
   

 
points, which is precisely 1d

p

 
 

 
 

greater than the number of points of curve dE . Note that 

d

p

 
 
 

 denotes the Legendre Symbol. Let 0 1 2 2, , , pa a a    be 

the coefficients of t he polynomial 2 2
0 1 2 2

p
pa a x a x 
  , 

which was obtained from 
1 1

2 22 2( 1) ( 1)
p p

x dx
 

    after 
opening the brackets. Thus, summing over all x  yields 

1 11 1
2 2 22 2

[ ]
0 0
1 1 1

12 2 22 2 2
0

1 (( 1)( 1)) ( 1)

( 1) ( 1) ( 1) ( mod  ).

p pp p

d p
x x

p p p
p

x

M x dx p x

dx x dx p

  

 

  




       

    

 


  

By opening the brackets in 
1 1

2 22 2( 1) ( 1) ,
p p

x dx
 

   we have  
1 1

2 2
2 2 ( 1) ( mod  ).

p p

p

d
a d p

p

 



 
     

 
 So, using Lemma 2.1 

we have  

[ ] 1 ( mod  ).d p p

d
M a p

p 

 
   

 
  (4) 

We need to prove that [ ] 1( mod  )d pM p  if 3( mod  8)p   
and [ ] 1( mod  )d pM p  . We have to show  therefore that 

[ ] 1( ) ( mod  )d p p

d
M a p

p      for 3( mod  4)p    if 

1
2

2
1

0 2

( ) 0( mod  ).

p

j j
p

j

C d p






  If we can pr ove that  

1 0( mod  )pa p  , then it will fo llow from (3). Let us 
determine 1pa   according to Newton's binomial formula: 

1pa   is equal t o the coefficient at 1px   in the polynomial, 

which is ob tained as a product  
1 1

2 22 2( 1) ( 1)
p p

x dx
 

  . So, 
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1
1 2

22
1 1

0 2

( 1) ( ) .

p
p

j j
p p

j

a d C




 


    Actually, the following equality 

holds:   
1

1 1 1 12 ( ) 22 2 2 2
1 1

0 2 2
1 1

1 1 12 2
22 2 2

1 1 1
0 02 2 2

( )( 1) ( ) ( 1)

( 1) ( 1) ( ) .

p
p p p p

j j jj j j
p p

j

p p
p p p

jj j j j
p p p

j j

d C d C

d C C d C


   
   

 


 
  



  
 

   

    



 

  

Since 

1
2

2
1 1

0 2

( ) ,

p

j j
p p

j

a C d



 


    then exact number of affine 

points on non supersingular curve is the following 
1

2
2

[ ] 2 2 1 1
0 2

( ) ( mod  ).

p

j j
d p p p p

j

d
M a a C d p

p



  


 
      

 
     (5) 

According to th e condition of this theorem 1 0,pa    
therefore [ ] 2 2 ( mod )d p pM a p  . Consequently, in the case 
when 3( mod  4),p  where p is prime and 

1
2

2
1

0 2

( ) 0( mod  ),

p

j j
p

j

C d p






  the curve dE   has 

[ ] ( 1) 1 2d p

d d d
N p p

p p p

     
           

     
 affine points 

and a group of points of the curve completed by singular 
points has 1p    points.   
 The exact number of the points has upper bound 
2 1p   because for every 0x    corresponds two valuations 
of y , but for 0x   we have only one solution 0y  .  
Taking into account that  px F  we have exactly p  values 
of x . Also there are 4 pai rs ( 1,0) and (0, 1)  which are 
points of dE  thus [ ] 1d pN   . Thus [ ] 1d pN p  . This 
completes the proof. 
Corollary: The orders of the curves 2 2 2 21x y dx y     and 

2 2 1 2 21x y d x y    over pF  are equal to 

[ ] [ ]1 ,d p d pN p N      when ( ) 1,d

p
        

and  [ ] [ ]3 4,d p d pN p N     when ( ) 1d

p
  iff  

3( mod  4)p   is prime and 

1
2

2
1

0 2

( ) 0( mod  )

p

j j
p

j

C d p






 . 

Since all transformations in proof of Theorem 2.1. were 
equivalent transitions then we o btain the proof of 
equivalence of conditions. 
 
Theorem 2.2. If t he coefficient 2d    or 12d    and 

3( mod 4)p    then 

1
2

2
1

0
( ) 0( mod )

p

j j
p

j d

d C p






  and  

[ ] 1d pN p  . 
Proof. When 3( mod  4)p  , we shall show that 

1
2

2
1

0

( ) 0( mod  ).

p

j j
p

j d

d C p






  We multiply each binomial 

coefficient in this sum by 1( )!
2

p   to obtain after som e 

algebraic manipulation 

1
2

1 1 1 1( )( 1) ( 1)( )!1 2 2 2 2( )!
2 1 2

1 1 1 1 1( )( 1) ( 1)[( )( 1) ( 1)].
2 2 2 2 2

j
p

p p p p
jp

C
j

p p p p p
j j



   
  

 


    
     





 

  
After that, by applying the congruence 

2 21 1( ) ( 1 ) ( mod  )
2 2

p p
k k p

 
     with 10

2
p

k


   to 

the multipliers in previous parentheses, we obtain 
1 1[( )( 1) ( 1)]

2 2
p p

j
 

  .  

It yields  

1
2

1 1 11 1
2 2 2

1 1 11 ( 1) .
2 2 2

[ ]
p

j

p p p
j

p p p
j




             
    

            
   





 

Thus, as a result of squaring, we have: 
2 2 2

1
2

2

1 1 1(( ! ) ( 1) ( 2)
2 2 2

( 1) ( mod  ).

) j
p

p p p
C j j

p j p



  
     

  

      (6)  

It remains to prove that 

1
2

2
1

0 2

( ) 2 0( mod  )

p

j j
p

j

C p






  if 

3( mod  4)p  . 
Consider the auxiliary polynom ial 

1
2 22

10
2

1( ) ( !) ( ) .
2

p
j j
pj

p
P t C t






   We are going to s how that 

(2) 0P   and therefore 1 0( mod  )pa p  . Using (6) it can 
be shown that 

1 1
2 2 22 2

1 10 0
2

2 2

1( ) ( !) ( ) ( 1)
2

1( 2) ...( ) ( mod  )
2

p p
j j

p pj j

k

p
a P t C t k

p
k k t p

 

  


    


  

 
 

over .pF  We replace d   by t   in (1) such that we can 
research a more generalized problem.  It should be noted 
that 
 

1 1 1 1
2 2 2 2( ) ( ) ( ( ) )

p p p p

P t Q t t t
   

    over ,pF  where 

1( ) ... 1pQ t t t      and 
1

2
p

 denotes the 1
2

p  -th 

derivative by ,t  where t   is new variable but not a 
coordinate of curve. Observe that 
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11 ( 1)( ) ( 1) ( mod  )
1 1

p p
pt t

Q t t p
t t

 
   

 
 and therefore the 

equality 
1 1 1 1( ) ( )1 2 2 2 2( ) ( 1)(( ) )

p p p p
pP t t t t

   
   holds over F .p   

In order to simplify the notation, we let 1t    and 
( ) ( 1).R P   For the case 2t   we have 1.   

Performing this substitution leads the polynomial  ( )P t  of 2 
to the polynomial ( 1)R t   of 1.  T aking into account the 
linear nature of the substitution 1t   ,  it can be seen that  
that derivation by    and t  coincide. Derivation leads us to 
the transformation of polynomial ( )R   to form where it has 
the necessary coefficient p-1.a  Then 

1 1 1 1
12 2 2 2

1 1 1
2 2 2

( ) ( 1) ( 1) ( 1)

( 1)! ( 1) .
(( 1) / 2)!

( ( ) )
( )

p p p p
p

p p p

R P

p

p

   


  

         


   



    

  
In order to prove that 1 0( mod  )pa p  , it is now sufficient 
to show that ( ) 0R    if 1   over pF . We obtain 

1
2

10
2

( 1)! 1(1) ( 1) ( ).
1 2( )!

2

p
j
pj

p p
R C j j

p





 
  

     

We will  manipulate now the expression 
1 1 1 1( 1)( 2) ( ).

2 2 2 2
p p p p

j j j
   

        

In order to illustrate the simplification we now consider the 

scenario when 11p   and hence 1 5.
2

p 
   

The expression gets the 
form

5

(5 1)(5 2) (5 5) (6 )(7 ) (10 )

( 5 )( 4 ) ( 1 )

( 1) ( 1)( 2) ( 5) ( mod  11).

( )
( )

j j j j j j

j j j

j j j

          

       

    

 





  

Therefore, for a prime ,p  we can rewrite the expression as 

1
2

1 1 1 1( 1)( 2) ( )
2 2 2 2

1 1

( 1) ( 1) ( ) 1( 1) ( )( mod  ).
2 2

p

p p p p
j j jp p

j j j j

p


   
       

       

 

  
As a result, the symmetrical terms in (7 ) can be reduced 
yielding 1 0( mod  )pa p  .  It should be noted that  

1
2( 1) 1

p

     since 3p Mk   and 1 2 1
2

p
k


  . 

Consequently, we ha ve (2) (1) 0P R   and hence 

1 0( mod  )pa p   as required. Thus, 
1

22
10

2

( ) 0( mod  ),
p

j
pj

C p



  completing the proof of th e of 

the theorem.  
 
Corollary 2.2. The c urve dE  is supersingular iff 1d

E  is 
supersingular.  

Proof. Let us recall the proved fact i n Theorem 2.1 that 
1

2
2

[ ] 2 2 1 1
0 2

( ) ( mod  ).

p

j j
d p p p p

j

d
N a a C d p

p



  


 
      

 
   

Since 2
1

2

( ) 0( mod  )j j
pC d p  by condition, and the 

congruence  
1

( ) ( )d d

p p



  holds, then 1[ ] [ ]
.d p d p

N N    

 
Corollary 2.3. If 3(mod 4)p   , is prime then there exists  

some  T  such that 

1
2

2
1

0 2

( ) 2

p

j j
p

j

T C d q






   and 

[ ] 1 2d p

d
N p T

p

 
    

 
.  

Proof.  Due to equality (5) a nd the bounds (8) as well as 
according to generalized Hasse-Weil theorem 

[ ]| ( 1) 2 | 2d p

d
N p g p

p

 
    

 
, where g  is genus of 

curve, we obtain exact number [ ]d pN  as we showed, 1g  . 
 From Theorem 2.1 as well as f rom Corollary 2.2 we get, 

that  

1
2

2
1 [ ]

0 2

( ) ( 1) 2

p

j j
p d p

j

d
C d N p

p






 
      

 
  so there exists 

,T  such that 2T p  and [ ] 1 2d p

d
N p T

p

 
    

 
. 

 
Example 2.1. If 13p  , 2d   gives  2 13 8N   and 13p  , 

1 7d    gives that the n umber of points of 7E  is  

7[13] 20N  , which is i n contradiction to that suggested by 
Bessalov and Thsigankova 

2

d

N p p p p

p 

         

 
. Moreover, if 7( mod  8)p  , then the order of torsion 

subgroup of curve is 12 2
3N N p   , which is clearly 

different to 1p     

For instance 31,p  then 12[31] 2 [31]
28 31 3,N N      

which is clearly not equal to 1.p   If 
17, 2 (4mod  7)p d     then the curve 12

E   has four 
points, namely        0,1 ;  0,6 ; 1,0 ;  6,0 , and t he in case 

7p   with 2( mod  7)d  , the curve 12
E   also has fo ur 

points:        0,1 ;  0,6 ;  1,0 ;  6,0 , demonstrating the order 
in this scenario is 3p  . 
The following theorem shows that the total number of affine 
points upon the Edwards curves dE   and 1d

E   are equal 
under certain assumptions. This the orem provides us 
additionally with a formula for enumerating the number of 
affine points upon the birationally isomorphic Montgomery 
curve MN . 
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Theorem 2.3.  Let d  satisfy the condition of 
supersingularity (1). If 1( mod  2)n   and p  is prime, then 

[ ]
1n

n

d p
N p   and the order of curve is equal to 

 

[ ]
1 2n

n

d p

d
N p

p

 
    

 
. 

 

If 0( mod  2)n   and p  is prime, then the order of curve  

  2
[ ]

3 2( )n

n
n

d p
N p p    , and the order of projective curve 

is equal to 2
[ ]

1 2( )n

n
n

d p
N p p    . 

If 0( mod  2)n   and p  is prime, then the order of 
projective curve is equal to  

/2
[ ]

1 2( )n

n n

d p
N p p    , and The order of curve is equal 

to / 2
[ ]

3 2( )n

n n

d p
N p p    . 

 
Proof. We consider the extension of the base field pF   to 

np
F   in order to determine the number of the points on the 

curve 2 2 2 21x y dx y   . Let  P x  denotes a polynomial 
with degree  2m   whose coefficients are from pF  .To 
make the proof, we take i nto account that it is known 
\cite{Step} that the nu mber of solutions to 2 ( )y P x  over 

np
F  will have t he form 1 11 ...n n n

mp       where 

1 1,..., m   , 
1
2| |i p . 

In case of our supersingular curve, if 1( mod  2)n   the 
number of points on projective curve over np

F  is 

determined by the expression 1 21n n np     , where 
n
i   and 1 2   , | |i p   that's why 1 i p , 

2 i p    with {1,2}i . In the general case, it is known 

\cite{Step, Gla, Lidl} that 
1
2| |i p . The order of the 

projective curve is therefore 1np  . 
 

If 7( mod  8)p   , then it is known from a result of 
Skuratovskii [10] that dE  has in its projective closure of the 
curve singular points which are not affine and therefore 

[ ] 3n
d pN p  . 

If 3( mod  8)p  , then there are no singular points, hence 

[ ] [ ] 1n
d p d pN N p   . 

 
Consequently the number of points on the Edwards curve 

depends on ( )d

p
 and is equal  to [ ] 3n

d pN p   if 

7( mod  8)p   and [ ] 1n
d pN p   if 3( mod  8)p    where 

1( mod  2).n  We note that this is because the 

transformation of  (3)  in dE  depends upon the denominator 
2( 1)dx  . 

 
If 1( mod  2)n   then, with respect to the sum of the root of 
the characteristic equation for the Frobenius endomorphism 

1 2
n n  , which in this case have the same signs, we obtain 

that the number of points in the group of points of the curve 
is 1 21n n np      [19]. In m ore details 1 2,  are 
eigenvalues of Frobenius operator F  endomorphism on 
etale cohomology over the finite field np

F , where F  acts of 

( )iH X . The number of points, in gene ral case, are 
determined by Lifshitz formula:  

 F ( 1) (F ( ))n

i n i

p
X tr H X #  

where  F np
X#  is a number of points in the m anifold X  

over np
F , nF  is composition of the Frobenius operator. In 

our case, dE  is considered as the manifold X  over np
F . 

For 0( mod  2)n    we always have, that every pd F  is a 

quadratic residue in np
F  . Consequently, because of ( ) 1d

p
   

four singular points appear on the curve. Thus, the number 
of affine points is  less by 4, i.e. 

2 2
[ ]

1 2 2( ) 3 2( ) .n

n n
n n

d p

d
N p p p p

p

 
         

 
  

 
 
Lemma 2.2. There exists birational isomorphism between 

dE  and ME , which is determ ined by correspondent 

mappings 1
1

u
x

u





 and 2u

y
v

 . 

Proof. To verify this statement in supersingular case 
 we suppose that the curve 2 2 2 21x y dx y    contains 

1 2 d
p

p

 
   

 
 points ( , )x y , with coordinates over prime 

field F .p  Consider the tra nsformation of the curve 
2 2 2 21x y dx y    into the following form 

2 2 2( 1) 1.y dx x     Make t he substitutions 1
1

u
x

u





 and 

2 .u
y

v
   We will call the special points of this 

transformations the point i n which these transformations or 
inverse  transformations are not determined. As a result the 
equation of curve the equation of the curve takes the form 

2 2

2 2 2

4 ( 1) 2( 1) ( 1) 4 .
(1 ) (1 )

u d u d u d u

v u u

    
 

 
  Multiply the 

equation of the curve by 
2 2(1 ) .

4
v u

u

    As a result of the 

reduction, we obtai n the equation  
2 3 2( 1) 2( 1) ( 1) .v d u d u d u       We analyze what new 

solutions appeared in t he resulting equation in com paring 
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11 ( 1)( ) ( 1) ( mod  )
1 1

p p
pt t

Q t t p
t t

 
   

 
 and therefore the 

equality 
1 1 1 1( ) ( )1 2 2 2 2( ) ( 1)(( ) )

p p p p
pP t t t t

   
   holds over F .p   

In order to simplify the notation, we let 1t    and 
( ) ( 1).R P   For the case 2t   we have 1.   

Performing this substitution leads the polynomial  ( )P t  of 2 
to the polynomial ( 1)R t   of 1.  T aking into account the 
linear nature of the substitution 1t   ,  it can be seen that  
that derivation by    and t  coincide. Derivation leads us to 
the transformation of polynomial ( )R   to form where it has 
the necessary coefficient p-1.a  Then 

1 1 1 1
12 2 2 2

1 1 1
2 2 2

( ) ( 1) ( 1) ( 1)

( 1)! ( 1) .
(( 1) / 2)!

( ( ) )
( )

p p p p
p

p p p

R P

p

p

   


  

         


   



    

  
In order to prove that 1 0( mod  )pa p  , it is now sufficient 
to show that ( ) 0R    if 1   over pF . We obtain 

1
2

10
2

( 1)! 1(1) ( 1) ( ).
1 2( )!

2

p
j
pj

p p
R C j j

p





 
  

     

We will  manipulate now the expression 
1 1 1 1( 1)( 2) ( ).

2 2 2 2
p p p p

j j j
   

        

In order to illustrate the simplification we now consider the 

scenario when 11p   and hence 1 5.
2

p 
   

The expression gets the 
form

5

(5 1)(5 2) (5 5) (6 )(7 ) (10 )

( 5 )( 4 ) ( 1 )

( 1) ( 1)( 2) ( 5) ( mod  11).

( )
( )

j j j j j j

j j j

j j j

          

       

    

 





  

Therefore, for a prime ,p  we can rewrite the expression as 

1
2

1 1 1 1( 1)( 2) ( )
2 2 2 2

1 1( 1) ( 1) ( ) 1( 1) ( )( mod  ).
2 2

p

p p p p
j j j

p p
j j j j p



   
      

 
       



 

  
As a result, the symmetrical terms in (7 ) can be reduced 
yielding 1 0( mod  )pa p  .  It should be noted that  

1
2( 1) 1

p

     since 3p Mk   and 1 2 1
2

p
k


  . 

Consequently, we ha ve (2) (1) 0P R   and hence 

1 0( mod  )pa p   as required. Thus, 
1

22
10

2

( ) 0( mod  ),
p

j
pj

C p



  completing the proof of th e of 

the theorem.  
 
Corollary 2.2. The c urve dE  is supersingular iff 1d

E  is 
supersingular.  

Proof. Let us recall the proved fact i n Theorem 2.1 that 
1

2
2

[ ] 2 2 1 1
0 2

( ) ( mod  ).

p

j j
d p p p p

j

d
N a a C d p

p



  


 
      

 
   

Since 2
1

2

( ) 0( mod  )j j
pC d p  by condition, and the 

congruence  
1

( ) ( )d d

p p



  holds, then 1[ ] [ ]
.d p d p

N N    

 
Corollary 2.3. If 3(mod 4)p   , is prime then there exists  

some  T  such that 

1
2

2
1

0 2

( ) 2

p

j j
p

j

T C d q






   and 

[ ] 1 2d p

d
N p T

p

 
    

 
.  

Proof.  Due to equality (5) a nd the bounds (8) as well as 
according to generalized Hasse-Weil theorem 

[ ]| ( 1) 2 | 2d p

d
N p g p

p

 
    

 
, where g  is genus of 

curve, we obtain exact number [ ]d pN  as we showed, 1g  . 
 From Theorem 2.1 as well as f rom Corollary 2.2 we get, 

that  

1
2

2
1 [ ]

0 2

( ) ( 1) 2

p

j j
p d p

j

d
C d N p

p






 
      

 
  so there exists 

,T  such that 2T p  and [ ] 1 2d p

d
N p T

p

 
    

 
. 

 
Example 2.1. If 13p  , 2d   gives  2 13 8N   and 13p  , 

1 7d    gives that the n umber of points of 7E  is  

7[13] 20N  , which is i n contradiction to that suggested by 
Bessalov and Thsigankova 

2 2
[ ]

1 2 2( ) 3 2( )n

n n
n n

d p

d
N p p p p

p

 
         

 
. 

Moreover, if 7( mod  8)p  , then the order of torsion 
subgroup of curve is 12 2

3N N p   , which is clearly 
different to 1p   
  

For instance 31,p  then 12[31] 2 [31]
28 31 3,N N      

which is clearly not equal to 1.p   If 
17, 2 (4mod  7)p d     then the curve 12

E   has four 

points, namely        0,1 ;  0,6 ; 1,0 ;  6,0 , and t he in case 
7p   with 2( mod  7)d  , the curve 12

E   also has fo ur 

points:        0,1 ;  0,6 ;  1,0 ;  6,0 , demonstrating the order 
in this scenario is 3p  . 
The following theorem shows that the total number of affine 
points upon the Edwards curves dE   and 1d

E   are equal 
under certain assumptions. This the orem provides us 
additionally with a formula for enumerating the number of 
affine points upon the birationally isomorphic Montgomery 
curve MN . 
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algebraic extension of degree n , we will consider 

1 2 =n n n np p    if 1(mod 2)n  . Therefore, for 
1(mod 2)n  , the order of the Montgomery curve is 

precisely given by 
[

= 1]
n

nM p
N p  . Here's one infinitely 

remote point as a neutral element of the group of points of 
the curve. 

 Considering now an elliptic cu rve, we h ave 
1 2=   by [5], which leads to 1 2 = 0  . For = 1n , it is  

clear that =MN p . When n  is odd, we h ave 1 2 = 0n n   
and therefore , = 1n

M nN p  . Because n  is even by initial 

assumption, we sh all show that 2
[

= 1 2( )]

n
n

nM p
N p p    

holds as required. 
Note that for = 2n  we can express the number as 

 222[ = 1 2 = 1]d pN p p p    with respect to Lagran ge 

theorem have to be divisible on [ ]d pN . Because a group of 

2( )d p
E F  over square extension of pF  contains the group 

(F )d pE  as a proper subgroup. In fact, according to Theorem 
1 the order (F )d pE  is 1p   therefore divisibility of order 

2(F )d p
E  holds because in our case  = 7p  thus 2= 8Ed

N  

and [7]1 = 8 = dp N [16]. 
 The following two examples exemplify Corollary 2.4. 
 
Example 2.3. If 3( mod  8)p   and 2n k  then we have 
when 2d  , 2n  , 3p   that the number of affi ne points 

equals to 22
2[3] 3 2( ) 3 3 2 ( 3) 12,

n
nN p p            

and the number of projective points is equal to 
22

2[3] 1 2( ) 3 1 2 ( 3) 16.
n

nN p p            
 
Example 2.4. If 7( mod  8)p   and 2n k  then we have 
when 2d  ,  2n  , 7p   that the number of affine points 

equals to 22
2[7] 3 2( ) 7 3 2 ( 7) 60,

n
nN p p            

and the number of projective points is equal to  
22

2[7] 1 2( ) 7 1 2 ( 7) 64.
n

nN p p            
 
The group of points of the supersingular curve dE   contains 

1 2 d
p

p

 
   

 
  affine points and the affine singular points 

whose number is 2 2.d

p

 
 

 
   

The singular points were discovered in [10] and hence if the 
curve is free of singular points then the group order is 1p  .  

 
Example 2.5.1  The number of curve points over finite field 
when = 2d  and = 31p  is equal to 

2[31] 12 [31]
= = 3 = 28N N p  . 

 
Theorem 2 2.4. The order of Edwards curve over pF  is 

congruent to  
1

1 2
22[ ] 1

=0 2
1

1 2
22

1
=0 2

( 1 2 ( 1) ( ) )

(( 1) ( ) 1 2 )(mod ).

p
p

j j
d p p

j

p
p

j j
p

j

d
N p C d

p

d
C d p

p











 
      

 

 
     

 





 

The true value of [ ]d pN  lies in [4;2 ]p  and is even.   
Proof. This result follows from the number of solutions of 

the equation 2 2 2= ( 1)( 1)y x dx   over pF  which equals to  
 

 

 

2 2 2 21 1

=0 =0

1
1 12

2 22 2

=0

1
1 2

22
1

=0 2

( 1)( 1) ( 1)( 1)) 1 ( ))

( ( 1) ( 1) ) mod

(( 1) ( ) ( )) mod .

p p

x x

p
p p

j

p
p

j j
p

j

x dx x dx
p

p p

x dx p

d
C d p

p

 


 






    
    

 

   

  

 





 

The quantity of solutions for 2 2 2 2= 1x y dx y   
differs from the quantity of 2 2 2= ( 1)( 1)y dx x   by 

( ) 1d

p
  due to new solutions in the from ( ,0), ( ,0)d d . 

So this quantity is such  

 

 

2 21

=0

2 21

=0

1
1 12

2 22 2

=0

1
1 2

22
1

=0 2

( 1)( 1)) 1 ( ) 1

( 1)( 1)( )) ( ) 1

( ( 1) ( 1) ( ) 1) mod

( 1) ( ) (2( ) 1) mod .

p

x

p

x

p
p p

j

p
p

j j
p

j

x dx d

p p

x dx d
p

p p

d
x dx p

p

d
C d p

p






 






    
      

  
  

    
 

     

   









 

According to Lemma 1 th e last su m 

 
1

1 12
2 22 2

=0
( ( 1) ( 1) ) mod

p
p p

j

x dx p


 

   is congruent to 

1 2 2 ( )p pa a mod p   , where ia  are the coefficients from 
presentation  

 
1 1

2 2 2 22 2
0 1 2 2( 1) ( 1) = ... .

p p
p

px dx a a x a x
 


      
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Last presentation was obtained due t o 
transformation 

1 1 11
2 2 22 2 2

1
=0 2

11
2 2

1
=0 2

( 1) ( 1) = ( ( 1) )

( ( 1) ).

p p pp kk k
p

x

pp jj j j
p

x

x dx C x

C d x

   



 



  






 

 Therefore 2 2pa   is equal to 
1

2 ( )(mod )
p d

d p
p



  

and 
11

2 22
1 1=0

2

= ( ) ( 1)
pp

j j
p pj

a C d


   . 

According to Newton's binomial formula 1pa   

equal to t he coefficient at 1px   in the product of two 
brackets and when substituting it d  instead of 2 is such 

 
1

1 2
22

1
=0 2

( 1) ( ) ,

p
p

j j
p

j

d C




   

that is, it has the form of the polynomial with 
inverse order of coefficients. 

Indeed, we have equality  
 

1
1 1 1 12 ( ) 22 2 2 2
1 1

=0 2 2
1 1

1 1 12 2
22 2 2

1 1 1
=0 =02 2 2

( )( 1) ( ) ( 1) =

= ( 1) = ( 1) ( ) .

p
p p p p

j j jj j
p p

j

p p
p p p

jj j j j
p p p

j j

d C C

d C C d C


   
   

 

 
  



  

  

  



 

 

 
In form of a su m it is th e following 

1
1 1 1 12 ( ) 22 2 2 2
1 1

=0 2 2

2 ( )( 1) 2 ( ) ( 1) =

p
p p p p

j j jj j j
p p

j

C C


   
   

      

1 1
1 1 12 2

22 2 2
1 1 1

=0 =02 2 2

= ( 1) 2 = ( 1) 2 ( ) .

p p
p p p

jj j j j
p p p

j j

C C C

 
  



       

over pF  equals to 

1 2 1 ( ) =d d d
p p

p p p

     
         

     
 and differs from the 

quantity of solutions of 2 2 2 2= 1x y dx y   by ( ) 1d

p
  due 

to new solutions of 2 2 2= ( 1)( 1)y dx x  . Thus, in general 

case if 
11

2 22
1 1=0

2

= ( ) ( 1) 0
pp

j j
p pj

a C d


     we have 

 

1
1 12

22 2
1 1

=0 2 2
1

1 2
22

1
=0 2

1
1 2

22
1

=0 2

= ( ( ) (( ) 1) ( 1) ( ) )

( 1 ( 1) ( ) 2( ))

(( 1) ( ) 1 2( )) mod .

p
p p

j j j
E p pd

j

p
p

j j
p

j

p
p

j j
p

j

d d
N p C C d

p p

d
p C d

p

d
C d p

p


 



 











     

     

   







 

The exact order is not less t han 4 because cofactor 
of this curve is 4. To determine the order is uniquely enough 
to take into account that p  and 2 p  have different parity. 
Taking into account that the order is even we chose a term 
p  or 2 p , for the sum which define the order. 

Theorem 2.5.3 If = 1d

p

 
 
 

, then the orders of the curves 

dE  and 1d
E  , satisfies to the following relation 

1= .d d
E E   

If = 1d

p

 
 

 
, then dE  and 1d

E   are pair of twisted 

curves i.e. orders of curves dE  and 1d
E   satisfies to the 

following relation of duality  

1 = 2 2.d d
E E p   

Let the curve be d efined by 
2 2 2 2= 1 ( )x y dx y modp  , then we can express 2y  in such 

way:  

 
2

2
2

1  .
1

x
y mod p

dx





  (9) 

 
For 2 2 1 2 2= 1 ( )x y d x y modp   we could obtain 

that 
 

 
2

2
1 2

1  
1

x
y mod p

d x





 (10) 

 If = 1d

p

 
 
 

, then for the fixed 0x  a quantity of y  

over Fp  can be calculated by the formula 

2

1 2
1

1( ) 1

x

d x
p




   for 

x  such that 1 2 1 0(mod )d x p   . For so lution 0 0( , )x y  to 

(10), we have the equality  
2

2 0
0 2

0

1
  

1
x

y mod p
dx





 and we 

express 
2 2

2
0 02 1 1 10

0 2 2
12

0
0 0

1 11  1  11  
       .

1 1 1 11   1  1

x xx
y d d d

ddx d x x

  



   
     

     
        
   

 

Observe that  

2 2 2
2

1 2 1 2

2

1( 1)1 1= = = .
1 1 (( ) 1)

x x xy d
dd x d x
x

 

 
  

 (11) 

 

Thus, if 0 0( , )x y  is solution of (2), then 0

0

1 , 
y

x d

 
 
 

 

is a solution to (10) because last transformations determines 
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that 

2
1

2
00
2

0

1  1
y

  
1  1

d
x

modp
d

x

  
 

 
 

 
 

. Therefore last 

transformations    0
0 0

0

1,  ( , ) = , 
y

x y x y
x d

  determines 

isomorphism and bijection. 

 In case = 1d

p

 
 

 
, then every Fpx  is such that 

2 1 0dx    and 1 2 1 0d x   . If 0 0x  , then 0x  generate 2 
solutions of (2) iff 1

0x  gives 0 solutions of (10) because of 
(11) yields the following relation 

 
2 2 2

1 2 2 2
1 1 1

1 1 1( ) = ( )( ) = ( ).

x x x
dd x dx dx

p p p p

 

  

  
    (12) 

 
Analogous reasons give us that 0x  give exactly one 

solution of (2) iff 1
0x  gives 1 solutions of (10). Consider the 

set {1, 2,...., 1}x p   we obtain that the total amount of 
solutions of fo rm 1

0 0( , )x y  that represent point of (2) and 
pairs of form 0 0( , )x y  that represent point of curve (10) is 
2 2p  . Also we have two solutions of (2) of form (0,1)  
and (0, 1)  and two solutions of (10) that has form (0,1)  
and (0, 1) . The proof is fully completed. 
Example 2.6. 4 The number of  points of dE  over pF  for 

= 13p  and = 2d  is given by 2[13] = 8N . In the case when 

= 13p  and 1 = 7d   we have that the number of points of 

7E  is 7[13] = 20N . Therefore, we have that the sum of orders 

for these curve is equal to 28 = 2 13 2   which confirms 
our theorem. The set of points over 13F  when = 2d  are 

precisely 
{(0,1); (0,12);(1,0);(4, 4);(4,9);(9, 4);(9,9);(12,0)},  while 

for = 7,d  we have the set 

(0,1); (0,12);(1,0); (2,4); (2,9); (4,2); (4,11);(5,6); (5,7);  

(6,5); (6,8);(7,5);(7,8);(8,6); (8,7);(9, 2);(9,11);(11,4); (11,9);

(12,0) .   

Example 2.7. 5 If = 7p  and 1= 2 4(mod 7)d   , then we 

have ( ) = 1d

p
 and the curve 12

E   has four points which are 

(0,1); (0,6);(1,0); (6,0).  and the in case = 7p  for 

= 2(mod 7)d , the curve 12
E   also has four points which 

are (0,1); (0,6);(1,0); (6,0) .   
Definition 2.1. 6 We call the embedding degree a minimal 
power k  of a finite field extension such that the group of 
points of the curve can be embedded in the multiplicative 
group of kp

F .   

Let us obtain conditions of embedding [14] for the 
group of supersingular curves [ ]d pE F  of order p  in the 
multiplicative group of field kp

F  whose embedding degree 

is = 12k  [14]. We n ow utilise the Zsigmondy theorem 
which implies that a suitable characteristic of field pF  is an 
arbitrary prime p  which do not divide 12  and satisfies the 
condition 12P ( )q p , where 12P ( )x  is the cyclotomic 
polynomial. This p  will satisfy the n ecessary conditions 
( 1) |nx p  for an arbitrary = 1,...,11n . 
 
Proposition 2.2.7 The degree of embedding for the group of 
a supersingular curve dE  is equal to 2.   
Proof. The order of the group of a supersingular curve dE  is 
equal to 1kp  . It should be observed that 1kp   divides 

2 1kp  , but 1kp   does not divide expressions of the form 
2 1lp   with <l k . This division does not work for smaller 

values of l  due to the decomposition of the expression 
2 1 = ( 1)( 1)k k kp p p   . Therefore, we can use the 

definition to conclude that the degree of immersion must be 
2, confirming the proposition. 

Consider 2E  over 2F
p

, for i nstance we a ssume 

= 3p . We defi ne 9F  as 3F ( ) , where   is a r oot of 
2 1 = 0x   over 9F . Therefore elements of 9F  have form: 

a b  , where 3, Fa b . So we a ssume that 
{ ( 1), ( 1), }x         and check its belonging to 2E . 

For instance if = ( 1)x    then 
2 2= 2 1 = 2 =x       . Also in this case 
2 2 1 (2 1)( 1) (2 1)( 1)= = = = = .

1 ( 1)( 1) ( 1)( 1) 2
y

    
     

      
    

 

Therefore the correspondent second coordinate is 
= ( 1)y   . The similar computations lead us to  full the 

following list of curves points. 
Points of Edwards curve over square extension.  
The total amount is 12 affine points that confirms Corollary 
2.4. and Th eorem 2.3. b ecause of  

223 2( ) = 3 3 2( 3) = 12
n

np p      . 
  
 
3. Conclusion 
A new method for the order curve counting for Edwards and 
elliptic curves has been presented. The criterion  for 
supersingularity of these curves was also obtained. 
 
Acknowledgement: We thanks to Alexandr Rybak for 
interesting disscussion.   
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